
Package: qfratio (via r-universe)
August 30, 2024

Type Package

Title Moments and Distributions of Ratios of Quadratic Forms Using
Recursion

Version 1.1.1.9000

Date 2024-08-30

Description Evaluates moments of ratios (and products) of quadratic
forms in normal variables, specifically using recursive
algorithms developed by Bao and Kan (2013)
<doi:10.1016/j.jmva.2013.03.002> and Hillier et al. (2014)
<doi:10.1017/S0266466613000364>. Also provides distribution,
quantile, and probability density functions of simple ratios of
quadratic forms in normal variables with several algorithms.
Originally developed as a supplement to Watanabe (2023)
<doi:10.1007/s00285-023-01930-8> for evaluating average
evolvability measures in evolutionary quantitative genetics,
but can be used for a broader class of statistics. Generating
functions for these moments are also closely related to the
top-order zonal and invariant polynomials of matrix arguments.

License GPL (>= 3)

URL https://github.com/watanabe-j/qfratio

BugReports https://github.com/watanabe-j/qfratio/issues

Imports Rcpp, MASS, stats

LinkingTo Rcpp, RcppEigen

Suggests mvtnorm, CompQuadForm, graphics, testthat (>= 3.0.0), knitr,
rmarkdown

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Config/testthat/edition 3

VignetteBuilder knitr, rmarkdown

1

https://doi.org/10.1016/j.jmva.2013.03.002
https://doi.org/10.1017/S0266466613000364
https://doi.org/10.1007/s00285-023-01930-8
https://github.com/watanabe-j/qfratio
https://github.com/watanabe-j/qfratio/issues

2 a1_pk

Repository https://watanabe-j.r-universe.dev

RemoteUrl https://github.com/watanabe-j/qfratio

RemoteRef HEAD

RemoteSha b005bd05400f3d694ade357adc042dc62678f65d

Contents
a1_pk . 2
d1_i . 3
d2_ij . 5
d3_ijk . 8
dqfr . 11
dtil2_pq . 19
hgs . 21
hyperg_1F1_vec_b . 22
iseq . 23
is_diagonal . 23
KiK . 24
new_qfrm . 24
print.qfrm . 26
p_A1B1_Ed . 28
qfmrm . 40
qfpm . 45
qfrm . 48
range_qfr . 54
rqfr . 55
sum_counterdiag . 57
S_fromUL . 58
tr . 58

Index 59

a1_pk Recursion for a_{p,k}

Description

a1_pk() is an internal function to calculate ap,k (ar,l in Hillier et al. 2014; eq. 24), which is used
in the calculation of the moment of such a ratio of quadratic forms in normal variables where the
denominator matrix is identity.

Usage

a1_pk(L, mu = rep.int(0, n), m = 10L)

d1_i 3

Arguments

L Eigenvalues of the argument matrix; vector of λi

mu Mean vector µ for x

m Scalar to specify the desired order

Details

This function implements the super-short recursion described in Hillier et al. (2014 eqs. 31–32).
Note that wr,i there should be understood as wr,l,i with the index l fixed for each ar,l.

See Also

qfrm_ApIq_int(), in which this function is used (for noncentral cases only)

d1_i Coefficients in polynomial expansion of generating function—single
matrix

Description

These are internal functions to calculate the coefficients in polynomial expansion of generating
functions for quadratic forms in multivariate normal variables.

d1_i() is for standard multivariate normal variables, x ∼ Nn(0n, In).

dtil1_i_v() is for noncentral multivariate normal variables, x ∼ Nn(µ, In).

dtil1_i_m() is a wrapper for dtil1_i_v() and takes the argument matrix rather than its eigenval-
ues.

Usage

d1_i(L, m = 100L, thr_margin = 100)

dtil1_i_v(L, mu = rep.int(0, n), m = 100L, thr_margin = 100)

dtil1_i_m(A, mu = rep.int(0, n), m = 100L, thr_margin = 100)

Arguments

L Vector of eigenvalues of the argument matrix

m Integer-alike to specify the order of polynomials

thr_margin Optional argument to adjust the threshold for scaling (see “Details”)

mu Mean vector µ for x

A Argument matrix. Assumed to be symmetric in these functions.

4 d1_i

Details

d1_i() calculates dk(A), and dtil1_i_v() and dtil1_i_m() calculate d̃k(A) in Hillier et al.
(2009, 2014) and Bao and Kan (2013). The former is related to the top-order zonal polynomial
C[k](A) in the following way: dk(A) = 1

k!

(
1
2

)
k
C[k](A), where (x)k = x(x+ 1) . . . (x+ k − 1).

These functions calculate the coefficients based on the super-short recursion algorithm described in
Hillier et al. (2014: 3.2, eqs. 28–30).

Scaling:
The coefficients described herein (and in d2_ij and d3_ijk) can become very large for higher-
order terms, so there is a practical risk of numerical overflow when applied to large matri-
ces or matrices with many large eigenvalues (note that the latter typically arises from those
with many small eigenvalues for the front-end qfrm() functions). To avoid numerical over-
flow, these functions automatically scale coefficients (and temporary objects used to calculate
them) by a large number (1e10 at present) when any value in the temporary objects exceeds a
threshold, .Machine$double.xmax / thr_margin / n, where n is the number of variables. This
default value empirically seems to work well in most conditions, but use a large thr_margin
(e.g., 1e5) if you encounter numerical overflow. (The C++ functions use an equivalent expres-
sion, std::numeric_limits<Scalar>::max() / thr_margin / Scalar(n), with Scalar being
double or long double.)
In these R functions, the scaling happens order-wise; i.e., it influences all the coefficients of the
same order in multidimensional coefficients (in d2_ij and d3_ijk) and the coefficients of the
subsequent orders.
These scaling factors are recorded in the attribute "logscale" of the return value, which is a
vector/matrix/array whose size is identical to the return value, so that value / exp(attr(value,
"logscale")) equals the original quantities to be obtained (if there were no overflow).
The qfrm and qfmrm functions handle return values of these functions by first multiplying them
with hypergeometric coefficients (which are typically ≪ 1) and then scaling the products back to
the original scale using the recorded scaling factors. (To be precise, this typically happens within
hgs functions.) The C++ functions handle the problem similarly (but by using separate objects
rather than attributes).
However, this procedure does not always mitigate the problem in multiple series; when there are
very large and very small coefficients in the same order, smaller ones can diminish/underflow to
the numerical 0 after repeated scaling. (The qfrm and qfmrm functions try to detect and warn
against this by examining whether any of the highest-order terms is 0.) The present version of this
package has implemented two methods to mitigate this problem, but only through C++ functions.
One is to use the long double variable type, and the other is to use coefficient-wise scaling (see
qfrm and qfmrm).

Value

Vector of length m + 1, corresponding to the 0th, 1st, ..., and mth order terms. Hence, the [m + 1]-th
element should be extracted when the coefficient for the mth order term is required.

Has the attribute "logscale" as described in “Scaling” above.

References

Bao, Y. and Kan, R. (2013) On the moments of ratios of quadratic forms in normal random variables.
Journal of Multivariate Analysis, 117, 229–245. doi:10.1016/j.jmva.2013.03.002.

https://doi.org/10.1016/j.jmva.2013.03.002

d2_ij 5

Hillier, G., Kan, R. and Wang, X. (2009) Computationally efficient recursions for top-order invariant
polynomials with applications. Econometric Theory, 25, 211–242. doi:10.1017/S0266466608090075.

Hillier, G., Kan, R. and Wang, X. (2014) Generating functions and short recursions, with applica-
tions to the moments of quadratic forms in noncentral normal vectors. Econometric Theory, 30,
436–473. doi:10.1017/S0266466613000364.

See Also

qfpm, qfrm, and qfmrm are major front-end functions that utilize these functions

dtil2_pq for d̃ used for moments of a product of quadratic forms

d2_ij and d3_ijk for d, h, h̃, and ĥ used for moments of ratios of quadratic forms

d2_ij Coefficients in polynomial expansion of generating function—for ra-
tios with two matrices

Description

These are internal functions to calculate the coefficients in polynomial expansion of joint generating
functions for two quadratic forms in potentially noncentral multivariate normal variables, x ∼
Nn(µ, In). They are primarily used in calculations around moments of a ratio involving two or
three quadratic forms.

Usage

d2_ij_m(
A1,
A2,
m = 100L,
p = m,
q = m,
thr_margin = 100,
fill_all = !missing(p) || !missing(q)

)

d2_ij_v(
L1,
L2,
m = 100L,
p = m,
q = m,
thr_margin = 100,
fill_all = !missing(p) || !missing(q)

)

d2_pj_m(A1, A2, m = 100L, p = 1L, thr_margin = 100)

https://doi.org/10.1017/S0266466608090075
https://doi.org/10.1017/S0266466613000364

6 d2_ij

d2_1j_m(A1, A2, m = 100L, thr_margin = 100)

d2_pj_v(L1, L2, m = 100L, p = 1L, thr_margin = 100)

d2_1j_v(L1, L2, m = 100L, thr_margin = 100)

h2_ij_m(
A1,
A2,
mu = rep.int(0, n),
m = 100L,
p = m,
q = m,
thr_margin = 100,
fill_all = !missing(p) || !missing(q)

)

h2_ij_v(
L1,
L2,
mu = rep.int(0, n),
m = 100L,
p = m,
q = m,
thr_margin = 100,
fill_all = !missing(p) || !missing(q)

)

htil2_pj_m(A1, A2, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)

htil2_1j_m(A1, A2, mu = rep.int(0, n), m = 100L, thr_margin = 100)

htil2_pj_v(L1, L2, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)

htil2_1j_v(L1, L2, mu = rep.int(0, n), m = 100L, thr_margin = 100)

hhat2_pj_m(A1, A2, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)

hhat2_1j_m(A1, A2, mu = rep.int(0, n), m = 100L, thr_margin = 100)

hhat2_pj_v(L1, L2, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)

hhat2_1j_v(L1, L2, mu = rep.int(0, n), m = 100L, thr_margin = 100)

Arguments

A1, A2 Argument matrices. Assumed to be symmetric and of the same order.

d2_ij 7

m Integer-alike to specify the desired order along A2/L2

p, q Integer-alikes to specify the desired orders along A1/L1 and A2/L2, respectively.

thr_margin Optional argument to adjust the threshold for scaling (see “Scaling” in d1_i)

fill_all Logical to specify whether all the output matrix should be filled. See “Details”.

L1, L2 Eigenvalues of the argument matrices

mu Mean vector µ for x

Details

d2_**_*() functions calculate di,j(A1,A2) in Hillier et al. (2009, 2014) and Bao and Kan (2013).
These are also related to the top-order invariant polynomials C[k1],[k2](A1,A2) in the following
way: di,j(A1,A2) =

1
k1!k2!

(
1
2

)
k1+k2

C[k1],[k2](A1,A2), where (x)k = x(x + 1) . . . (x + k − 1)
(Chikuse 1987; Hillier et al. 2009).

h2_ij_*() and htil2_pj_*() functions calculate hi,j(A1,A2) and h̃i,j(A1;A2), respectively, in
Bao and Kan (2013). Note that the latter is denoted by the symbol hi,j in Hillier et al. (2014).
hhat2_pj_*() functions are for ĥi,j(A1;A2) in Hillier et al. (2014), used to calculate an error
bound for truncated sum for moments of a ratio of quadratic forms. The mean vector µ is a param-
eter in all these.

There are two different situations in which these coefficients are used in calculation of moments
of ratios of quadratic forms: 1) within an infinite series for one of the subscripts, with the other
subscript fixed (when the exponent p of the numerator is integer); 2) within a double infinite series
for both subscripts (when p is non-integer) (see Bao and Kan 2013). In this package, the situation 1
is handled by the *_pj_* (and *_1j_*) functions, and 2 is by the *_ij_* functions.

In particular, the *_pj_* functions always return a (p + 1) * (m + 1) matrix where all elements are
filled with the relevant coefficients (e.g., di,j , h̃i,j), from which, typically, the [p + 1,]-th row is
used for subsequent calculations. (Those with *_1q_* are simply fast versions for the commonly
used case where p = 1.) On the other hand, the *_ij_* functions by default return a (m + 1) * (m
+ 1) matrix whose upper-left triangular part (including the diagonals) is filled with the coefficients
(di,j or hi,j), the rest being 0, and all the coefficients are used in subsequent calculations.

(At present, the *_ij_* functions also have the functionality to fill all coefficients of a potentially
non-square output matrix, but this is less efficient than *_pj_* functions so may be omitted in the
future development.)

Those ending with _m take matrices as arguments, whereas those with _v take eigenvalues. The
latter can be used only when the argument matrices share the same eigenvectors, to which the
eigenvalues correspond in the orders given, but is substantially faster.

This package also involves C++ equivalents for most of these functions (which are suffixed by E for
Eigen), but these are exclusively for internal use and not exposed to the user.

Value

(p + 1) * (m + 1) matrix for the *_pj_* functions.

(m + 1) * (m + 1) matrix for the *_ij_* functions.

The rows and columns correspond to increasing orders for A1 and A2, respectively. And the 1st
row/column of each dimension corresponds to the 0th order (hence [p + 1, q + 1] for the (p, q)-th
order).

8 d3_ijk

Has the attribute "logscale" as described in the “Scaling” section in d1_i. This is a matrix of the
same size as the return itself.

References

Bao, Y. and Kan, R. (2013) On the moments of ratios of quadratic forms in normal random variables.
Journal of Multivariate Analysis, 117, 229–245. doi:10.1016/j.jmva.2013.03.002.

Chikuse, Y. (1987) Methods for constructing top order invariant polynomials. Econometric Theory,
3, 195–207. doi:10.1017/S026646660001029X.

Hillier, G., Kan, R. and Wang, X. (2009) Computationally efficient recursions for top-order invariant
polynomials with applications. Econometric Theory, 25, 211–242. doi:10.1017/S0266466608090075.

Hillier, G., Kan, R. and Wang, X. (2014) Generating functions and short recursions, with applica-
tions to the moments of quadratic forms in noncentral normal vectors. Econometric Theory, 30,
436–473. doi:10.1017/S0266466613000364.

See Also

qfrm and qfmrm are major front-end functions that utilize these functions

dtil2_pq for d̃ used for moments of a product of quadratic forms

d3_ijk for equivalents for three matrices

d3_ijk Coefficients in polynomial expansion of generating function—for ra-
tios with three matrices

Description

These are internal functions to calculate the coefficients in polynomial expansion of joint generating
functions for three quadratic forms in potentially noncentral multivariate normal variables, x ∼
Nn(µ, In). They are primarily used in calculations around moments of a ratio involving three
quadratic forms.

Usage

d3_ijk_m(
A1,
A2,
A3,
m = 100L,
p = m,
q = m,
r = m,
thr_margin = 100,
fill_across = c(!missing(p), !missing(q), !missing(r))

)

https://doi.org/10.1016/j.jmva.2013.03.002
https://doi.org/10.1017/S026646660001029X
https://doi.org/10.1017/S0266466608090075
https://doi.org/10.1017/S0266466613000364

d3_ijk 9

d3_ijk_v(
L1,
L2,
L3,
m = 100L,
p = m,
q = m,
r = m,
thr_margin = 100,
fill_across = c(!missing(p), !missing(q), !missing(r))

)

d3_pjk_m(A1, A2, A3, m = 100L, p = 1L, thr_margin = 100)

d3_pjk_v(L1, L2, L3, m = 100L, p = 1L, thr_margin = 100)

h3_ijk_m(
A1,
A2,
A3,
mu = rep.int(0, n),
m = 100L,
p = m,
q = m,
r = m,
thr_margin = 100,
fill_across = c(!missing(p), !missing(q), !missing(r))

)

h3_ijk_v(
L1,
L2,
L3,
mu = rep.int(0, n),
m = 100L,
p = m,
q = m,
r = m,
thr_margin = 100,
fill_across = c(!missing(p), !missing(q), !missing(r))

)

htil3_pjk_m(A1, A2, A3, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)

htil3_pjk_v(L1, L2, L3, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)

hhat3_pjk_m(A1, A2, A3, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)

10 d3_ijk

hhat3_pjk_v(L1, L2, L3, mu = rep.int(0, n), m = 100L, p = 1L, thr_margin = 100)

Arguments

A1, A2, A3 Argument matrices. Assumed to be symmetric and of the same order.

m Integer-alike to specify the desired order along A2/L2 and A3/L3

p, q, r Integer-alikes to specify the desired orders along A1/L1, A2/L2, and A3/L3, re-
spectively.

thr_margin Optional argument to adjust the threshold for scaling (see “Scaling” in d1_i)

fill_across Logical vector of length 3, to specify whether each dimension of the output
matrix should be filled.

L1, L2, L3 Eigenvalues of the argument matrices

mu Mean vector µ for x

Details

All these functions have equivalents for two-matrix cases (d2_ij), to which the user is referred
for documentations. The primary difference of these functions from the latter is the addition of
arguments for the third matrix A3/L3.

d3_*jk_*() functions calculate di,j,k(A1,A2,A3) in Hillier et al. (2009, 2014) and Bao and Kan
(2013). These are also related to the top-order invariant polynomials as described in d2_ij.

h3_ijk_*(), htil3_pjk_*(), and hhat3_pjk_*() functions calculate hi,j,k(A1,A2,A3), h̃i;j,k(A1;A2,A3),
and ĥi;j,k(A1;A2,A3), respectively, as described in the package vignette. These are equivalent to
similar coefficients described in Bao and Kan (2013) and Hillier et al. (2014).

The difference between the *_pjk_* and *_ijk_* functions is as described for *_pj_* and *_ij_*
(see “Details” in d2_ij). The only difference is that these functions return a 3D array. In the
pjk functions, all the slices along the first dimension (i.e., [i, ,]) are an upper-left triangular
matrix like what the *_ij_* functions return in the 2D case; in other words, the return has the
coefficients for the terms that satisfy j+k ≤ m for all i = 0, 1, . . . , p. Typically, the [p + 1, ,]-th
slice is used for subsequent calculations. In the return of the *_ijk_* functions, only the triangular
prism close to the [1, 1, 1] is filled with coefficients, which correspond to the terms satisfying
i+ j + k ≤ m.

Value

(p + 1) * (m + 1) * (m + 1) array for the *_pjk_* functions

(m + 1) * (m + 1) * (m + 1) array for the *_ijk_* functions (by default; see “Details”).

The 1st, 2nd, and 3rd dimensions correspond to increasing orders for A1, A2, and A3, respectively.
And the 1st row/column of each dimension corresponds to the 0th order (hence [p + 1, q + 1, r +
1] for the (p, q, r)-th order).

Has the attribute "logscale" as described in the “Scaling” section in d1_i. This is an array of the
same size as the return itself.

dqfr 11

References

Bao, Y. and Kan, R. (2013) On the moments of ratios of quadratic forms in normal random variables.
Journal of Multivariate Analysis, 117, 229–245. doi:10.1016/j.jmva.2013.03.002.

Hillier, G., Kan, R. and Wang, X. (2014) Generating functions and short recursions, with applica-
tions to the moments of quadratic forms in noncentral normal vectors. Econometric Theory, 30,
436–473. doi:10.1017/S0266466613000364.

See Also

qfmrm is a major front-end function that utilizes these functions

dtil2_pq for d̃ used for moments of a product of quadratic forms

d2_ij for equivalents for two matrices

dqfr Probability distribution of ratio of quadratic forms

Description

dqfr(): Density of the (power of) ratio of quadratic forms,
(

xTAx
xTBx

)p

, where x ∼ Nn(µ,Σ).

pqfr(): Distribution function of the same.

qqfr(): Quantile function of the same.

dqfr_A1I1(): internal for dqfr(), exact series expression of Hillier (2001). Only accommodates
the simple case where B = In and µ = 0n.

dqfr_broda(): internal for dqfr(), exact numerical inversion algorithm of Broda & Paolella
(2009).

dqfr_butler(): internal for dqfr(), saddlepoint approximation of Butler & Paolella (2007, 2008).

pqfr_A1B1(): internal for pqfr(), exact series expression of Forchini (2002, 2005).

pqfr_imhof(): internal for pqfr(), exact numerical inversion algorithm of Imhof (1961).

pqfr_davies(): internal for pqfr(), exact numerical inversion algorithm of Davies (1973, 1980).
This is experimental and may be removed in the future.

pqfr_butler(): internal for pqfr(), saddlepoint approximation of Butler & Paolella (2007, 2008).

The user is supposed to use the exported functions dqfr(), pqfr(), and qqfr(), which are (pseudo-
)vectorized with respect to quantile or probability. The actual calculations are done by one of
the internal functions, which only accommodate a length-one quantile. The internal functions
skip most checks on argument structures and do not accommodate Sigma to reduce execution time.

https://doi.org/10.1016/j.jmva.2013.03.002
https://doi.org/10.1017/S0266466613000364

12 dqfr

Usage

dqfr(
quantile,
A,
B,
p = 1,
mu = rep.int(0, n),
Sigma = diag(n),
log = FALSE,
method = c("broda", "hillier", "butler"),
trim_values = TRUE,
normalize_spa = FALSE,
return_abserr_attr = FALSE,
m = 100L,
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
...

)

pqfr(
quantile,
A,
B,
p = 1,
mu = rep.int(0, n),
Sigma = diag(n),
lower.tail = TRUE,
log.p = FALSE,
method = c("imhof", "davies", "forchini", "butler"),
trim_values = TRUE,
return_abserr_attr = FALSE,
m = 100L,
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
...

)

qqfr(
probability,
A,
B,
p = 1,
mu = rep.int(0, n),
Sigma = diag(n),
lower.tail = TRUE,
log.p = FALSE,
trim_values = FALSE,
return_abserr_attr = FALSE,

dqfr 13

stop_on_error = FALSE,
m = 100L,
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
epsabs_q = .Machine$double.eps^(1/2),
maxiter_q = 5000,
...

)

dqfr_A1I1(
quantile,
LA,
m = 100L,
check_convergence = c("relative", "strict_relative", "absolute", "none"),
use_cpp = TRUE,
tol_conv = .Machine$double.eps^(1/4),
thr_margin = 100

)

dqfr_broda(
quantile,
A,
B,
mu = rep.int(0, n),
autoscale_args = 1,
stop_on_error = TRUE,
use_cpp = TRUE,
tol_zero = .Machine$double.eps * 100,
epsabs = epsrel,
epsrel = 1e-06,
limit = 10000

)

dqfr_butler(
quantile,
A,
B,
mu = rep.int(0, n),
order_spa = 2,
stop_on_error = FALSE,
use_cpp = TRUE,
tol_zero = .Machine$double.eps * 100,
epsabs = .Machine$double.eps^(1/2),
epsrel = 0,
maxiter = 5000

)

pqfr_A1B1(

14 dqfr

quantile,
A,
B,
m = 100L,
mu = rep.int(0, n),
check_convergence = c("relative", "strict_relative", "absolute", "none"),
stop_on_error = FALSE,
use_cpp = TRUE,
cpp_method = c("double", "long_double", "coef_wise"),
nthreads = 1,
tol_conv = .Machine$double.eps^(1/4),
tol_zero = .Machine$double.eps * 100,
thr_margin = 100

)

pqfr_imhof(
quantile,
A,
B,
mu = rep.int(0, n),
autoscale_args = 1,
stop_on_error = TRUE,
use_cpp = TRUE,
tol_zero = .Machine$double.eps * 100,
epsabs = epsrel,
epsrel = 1e-06,
limit = 10000

)

pqfr_davies(
quantile,
A,
B,
mu = rep.int(0, n),
autoscale_args = 1,
stop_on_error = NULL,
tol_zero = .Machine$double.eps * 100,
...

)

pqfr_butler(
quantile,
A,
B,
mu = rep.int(0, n),
order_spa = 2,
stop_on_error = FALSE,
use_cpp = TRUE,

dqfr 15

tol_zero = .Machine$double.eps * 100,
epsabs = .Machine$double.eps^(1/2),
epsrel = 0,
maxiter = 5000

)

Arguments

quantile Numeric vector of quantiles q

A, B Argument matrices. Should be square. B should be nonnegative definite. Will
be automatically symmetrized in dqfr() and pqfr().

p Positive exponent of the ratio, default 1. Unlike in qfrm(), the numerator and
denominator cannot have different exponents. When p is non-integer, A must be
nonnegative definite. For details, see vignette vignette("qfratio_distr").

mu Mean vector µ for x

Sigma Covariance matrix Σ for x
log, lower.tail, log.p

Logical; as in regular probability distribution functions. But these are for con-
venience only, and not meant for accuracy.

method Method to specify an internal function (see “Details”). In dqfr(), options are:

"broda" default; uses dqfr_broda(), numerical inversion of Broda & Paolella
(2009)

"hillier" uses dqfr_A1I1(), series expression of Hillier (2001)
"butler" uses dqfr_butler(), saddlepoint approximation of Butler & Paolella

(2007, 2008)

In pqfr(), options are:

"imhof" default; uses pqfr_imhof(), numerical inversion of Imhof (1961)
"davies" uses pqfr_davies(), numerical inversion of Davies (1973, 1980)
"forchini" uses pqfr_A1B1(), series expression of Forchini (2002, 2005)
"butler" uses pqfr_butler(), saddlepoint approximation of Butler & Paolella

(2007, 2008)

trim_values If TRUE (default), numerical values outside the mathematically permissible sup-
port are trimmed in (see “Details”)

normalize_spa If TRUE and method == "butler", result is normalized so that the density inte-
grates to unity (see “Details”)

return_abserr_attr

If TRUE, absolute error of numerical evaluation is returned as an attribute "abserr"
(see “Value”)

m Order of polynomials at which the series expression is truncated. M in Hillier
et al. (2009, 2014).

tol_zero Tolerance against which numerical zero is determined. Used to determine, e.g.,
whether mu is a zero vector, A or B equals the identity matrix, etc.

tol_sing Tolerance against which matrix singularity and rank are determined. The eigen-
values smaller than this are considered zero.

16 dqfr

... Additional arguments passed to internal functions. In qqfr(), these are passed
to pqfr().

probability Numeric vector of probabilities

stop_on_error If TRUE, execution is stopped upon an error (including non-convergence) in eval-
uation of hypergeometric function, numerical integration, or root finding. If
FALSE, further execution is attempted regardless.

LA Eigenvalues of A
check_convergence

Specifies how numerical convergence is checked for series expression (see qfrm)

use_cpp Logical to specify whether the calculation is done with C++ functions via Rcpp.
TRUE by default.

tol_conv Tolerance against which numerical convergence of series is checked. Used with
check_convergence.

thr_margin Optional argument to adjust the threshold for scaling (see “Scaling” in d1_i).
Passed to internal functions (d1_i, d2_ij, d3_ijk) or their C++ equivalents.

autoscale_args Numeric; if > 0 (default), arguments are scaled to avoid failure in numerical
integration (see vignette("qfratio_distr")). If <= 0, the scaling is skipped.

epsabs, epsrel, limit, maxiter, epsabs_q, maxiter_q
Optional arguments used in numerical integration or root-finding algorithm (see
vignette: vignette("qfratio_distr")). In qqfr(), epsabs_q and maxiter_q
are used in root-finding for quantiles whereas epsabs and maxiter are passed
to pqfr() internally.

order_spa Numeric to determine order of saddlepoint approximation. More accurate second-
order approximation is used for any order > 1 (default); otherwise, (very slightly)
faster first-order approximation is used.

cpp_method Method used in C++ calculations to avoid numerical overflow/underflow (see
“Details” in qfrm)

nthreads Number of threads used in OpenMP-enabled C++ functions (see “Multithread-
ing” in qfrm)

Details

qqfr() is based on numerical root-finding with pqfr() using uniroot(), so its result can be af-
fected by the numerical errors in both the algorithm used in pqfr() and root-finding.

dqfr_A1I1() and pqfr_A1B1() evaluate the probability density and (cumulative) distribution func-
tion, respectively, as a partial sum of infinite series involving top-order zonal or invariant polynomi-
als (Hillier 2001; Forchini 2002, 2005). As in other functions of this package, these are evaluated
with the recursive algorithm d1_i.

pqfr_imhof() and pqfr_davies() evaluate the distribution function by numerical inversion of the
characteristic function based on Imhof (1961) or Davies (1973, 1980), respectively. The latter calls
davies(), and the former with use_cpp = FALSE calls imhof(), from the package CompQuad-
Form. Additional arguments for davies() can be passed via ..., except for sigma, which is not
applicable.

dqfr 17

dqfr_broda() evaluates the probability density by numerical inversion of the characteristic func-
tion using Geary’s formula based on Broda & Paolella (2009). Parameters for numerical integration
can be controlled via the arguments epsabs, epsrel, and limit (see vignette: vignette("qfratio_distr")).

dqfr_butler() and pqfr_butler() evaluate saddlepoint approximations of the density and dis-
tribution function, respectively, based on Butler & Paolella (2007, 2008). These are fast but not
exact. They conduct numerical root-finding for the saddlepoint by the Brent method, parame-
ters for which can be controlled by the arguments epsabs, epsrel, and maxiter (see vignette:
vignette("qfratio_distr")). The saddlepoint approximation density does not integrate to unity,
but can be normalized by dqfr(..., method = "butler", normalize_spa = TRUE). Note that this
is usually slower than dqfr(..., method = "broda") for a small number of quantiles.

The density is undefined, and the distribution function has points of nonanalyticity, at the eigenval-
ues of B−1A (assuming nonsingular B). Around these points, the series expressions tends to fail.
Avoid using the series expression methods for these cases.

Algorithms based on numerical integration can yield spurious results that are outside the mathe-
matically permissible support; e.g., [0, 1] for pqfr(). By default, dqfr() and pqfr() trim those
values into the permissible range with a warning; e.g., negative p-values are replaced by ~2.2e-14
(default tol_zero). Turn trim_values = FALSE to skip these trimming and warning, although
pqfr_imhof() and pqfr_davies() can still throw a warning from CompQuadForm functions.
Note that, on the other hand, all these functions try to return exact 0 or 1 when q is outside the
possible range of the statistic.

Value

dqfr() and pqfr() give the density and distribution (or p-values) functions, respectively, corre-
sponding to quantile, whereas qqfr() gives the quantile function corresponding to probability.

When return_abserr_attr = TRUE, an absolute error bound of numerical evaluation is returned
as an attribute; this feature is currently available with dqfr(..., method = "broda"), pqfr(...,
method = "imhof"), and qqfr(..., method = "imhof") (all default) only. This error bound is
automatically transformed when trimming happens with trim_values (above) or when log/log.p
= TRUE. See vignette for details (vignette("qfratio_distr")).

The internal functions return a list containing $d or $p (for density and lower p-value, respectively),
and only this is passed to the external function by default. Other components may be inspected for
debugging purposes:

dqfr_A1I1() and pqfr_A1B1() have $terms, a vector of 0th to mth order terms.

pqfr_imhof() and dqfr_broda() have $abserr, absolute error of numerical integration; the one
returned from CompQuadForm::imhof() is divided by pi, as the integration result itself is (in-
ternally). This is passed to the external functions when return_abserr_attr = TRUE (above).

pqfr_davies() has the same components as CompQuadForm::davies() apart from Qq which is
replaced by p = 1 - Qq.

References

Broda, S. and Paolella, M. S. (2009) Evaluating the density of ratios of noncentral quadratic forms
in normal variables. Computational Statistics and Data Analysis, 53, 1264–1270. doi:10.1016/
j.csda.2008.10.035

https://doi.org/10.1016/j.csda.2008.10.035
https://doi.org/10.1016/j.csda.2008.10.035

18 dqfr

Butler, R. W. and Paolella, M. S. (2007) Uniform saddlepoint approximations for ratios of quadratic
forms. Technical Reports, Department of Statistical Science, Southern Methodist University, no.
351. [Available on arXiv as a preprint.] doi:10.48550/arXiv.0803.2132

Butler, R. W. and Paolella, M. S. (2008) Uniform saddlepoint approximations for ratios of quadratic
forms. Bernoulli, 14, 140–154. doi:10.3150/07BEJ6169

Davis, R. B. (1973) Numerical inversion of a characteristic function. Biometrika, 60, 415–417.
doi:10.1093/biomet/60.2.415.

Davis, R. B. (1980) Algorithm AS 155: The distribution of a linear combination of χ2 random
variables. Journal of the Royal Statistical Society, Series C—Applied Statistics, 29, 323–333.
doi:10.2307/2346911.

Forchini, G. (2002) The exact cumulative distribution function of a ratio of quadratic forms in nor-
mal variables, with application to the AR(1) model. Econometric Theory, 18, 823–852. doi:10.1017/
S0266466602184015.

Forchini, G. (2005) The distribution of a ratio of quadratic forms in noncentral normal variables.
Communications in Statistics—Theory and Methods, 34, 999–1008. doi:10.1081/STA200056855.

Hillier, G. (2001) The density of quadratic form in a vector uniformly distributed on the n-sphere.
Econometric Theory, 17, 1–28. doi:10.1017/S026646660117101X.

Imhof, J. P. (1961) Computing the distribution of quadratic forms in normal variables. Biometrika,
48, 419–426. doi:10.1093/biomet/48.34.419.

See Also

rqfr, a Monte Carlo random number generator

vignette("qfratio_distr") for theoretical details

Examples

Some symmetric matrices and parameters
nv <- 4
A <- diag(nv:1)
B <- diag(sqrt(1:nv))
mu <- 0.2 * nv:1
Sigma <- matrix(0.5, nv, nv)
diag(Sigma) <- 1

density and p-value for (x^T A x) / (x^T x) where x ~ N(0, I)
dqfr(1.5, A)
pqfr(1.5, A)

95 percentile for the same
qqfr(0.95, A)
qqfr(0.05, A, lower.tail = FALSE) # same

P{ (x^T A x) / (x^T B x) <= 1.5} where x ~ N(mu, Sigma)
pqfr(1.5, A, B, mu = mu, Sigma = Sigma)

These are (pseudo-)vectorized
qs <- 0:nv + 0.5

https://doi.org/10.48550/arXiv.0803.2132
https://doi.org/10.3150/07-BEJ6169
https://doi.org/10.1093/biomet/60.2.415
https://doi.org/10.2307/2346911
https://doi.org/10.1017/S0266466602184015
https://doi.org/10.1017/S0266466602184015
https://doi.org/10.1081/STA-200056855
https://doi.org/10.1017/S026646660117101X
https://doi.org/10.1093/biomet/48.3-4.419

dtil2_pq 19

dqfr(qs, A, B, mu = mu)
(pres <- pqfr(qs, A, B, mu = mu))

Quantiles for above p-values
Results equal qs, except that those for prob = 0 and 1
are replaced by mininum and maximum of the ratio
qqfr(pres, A, B, mu = mu) # = qs

Various methods for density
dqfr(qs, A, method = "broda") # default
dqfr(qs, A, method = "hillier") # series; B, mu, Sigma not permitted
Saddlepoint approximations (fast but inexact):
dqfr(qs, A, method = "butler") # 2nd order by default
dqfr(qs, A, method = "butler", normalize_spa = TRUE) # normalized
dqfr(qs, A, method = "butler", normalize_spa = TRUE,

order_spa = 1) # 1st order, normalized

Various methods for distribution function
pqfr(qs, A, method = "imhof") # default
pqfr(qs, A, method = "davies") # very similar
pqfr(qs, A, method = "forchini") # series expression
pqfr(qs, A, method = "butler") # saddlepoint approximation (2nd order)
pqfr(qs, A, method = "butler", order_spa = 1) # 1st order

To see error bounds
dqfr(qs, A, return_abserr_attr = TRUE)
pqfr(qs, A, return_abserr_attr = TRUE)
qqfr(pres, A, return_abserr_attr = TRUE)

dtil2_pq Coefficients in polynomial expansion of generating function—for
products

Description

These are internal functions to calculate the coefficients in polynomial expansion of joint generating
functions for two or three quadratic forms in potentially noncentral multivariate normal variables,
x ∼ Nn(µ, In). They are primarily used to calculate moments of a product of two or three quadratic
forms.

Usage

dtil2_pq_m(A1, A2, mu = rep.int(0, n), p = 1L, q = 1L)

dtil2_1q_m(A1, A2, mu = rep.int(0, n), q = 1L)

dtil2_pq_v(L1, L2, mu = rep.int(0, n), p = 1L, q = 1L)

20 dtil2_pq

dtil2_1q_v(L1, L2, mu = rep.int(0, n), q = 1L)

dtil3_pqr_m(A1, A2, A3, mu = rep.int(0, n), p = 1L, q = 1L, r = 1L)

dtil3_pqr_v(L1, L2, L3, mu = rep.int(0, n), p = 1L, q = 1L, r = 1L)

Arguments

A1, A2, A3 Argument matrices. Assumed to be symmetric and of the same order.

mu Mean vector µ for x

p, q, r Integer-alikes to specify the order along the three argument matrices

L1, L2, L3 Eigenvalues of the argument matrices

Details

dtil2_pq_m() and dtil2_pq_v() calculate d̃p,q(A1,A2) in Hillier et al. (2014). dtil2_1q_m()
and dtil2_1q_v() are fast versions for the commonly used case where p = 1. Similarly, dtil3_pqr_m()
and dtil3_pqr_v() are for d̃p,q,r(A1,A2,A3).

Those ending with _m take matrices as arguments, whereas those with _v take eigenvalues. The
latter can be used only when the argument matrices share the same eigenvectors, to which the
eigenvalues correspond in the orders given, but is substantially faster.

These functions calculate the coefficients based on the super-short recursion algorithm described in
Hillier et al. (2014: sec. 4.2).

Value

A (p + 1) * (q + 1) matrix for the 2D functions, or a (p + 1) * (q + 1) * (r + 1) array for the 3D
functions.

The 1st, 2nd, and 3rd dimensions correspond to increasing orders for A1, A2, and A3, respectively.
And the 1st row/column of each dimension corresponds to the 0th order (hence [p + 1, q + 1] for
the (p, q)-th moment).

References

Hillier, G., Kan, R. and Wang, X. (2014) Generating functions and short recursions, with applica-
tions to the moments of quadratic forms in noncentral normal vectors. Econometric Theory, 30,
436–473. doi:10.1017/S0266466613000364.

See Also

qfpm is a front-end functions that utilizes these functions

d1_i for a single-matrix equivalent of d̃

https://doi.org/10.1017/S0266466613000364

hgs 21

hgs Calculate hypergeometric series

Description

These internal functions calculate (summands of) hypergeometric series.

hgs_1d() calculates the hypergeometric series c (a1)i
(b)i

di

hgs_2d() calculates the hypergeometric series c (a1)i(a2)j
(b)i+j

di,j

hgs_3d() calculates the hypergeometric series c (a1)i(a2)j(a3)k
(b)i+j+k

di,j,k

Usage

hgs_1d(dks, a1, b, lconst = 0)

hgs_2d(dks, a1, a2, b, lconst = 0)

hgs_3d(dks, a1, a2, a3, b, lconst = 0)

Arguments

dks (m + 1) vector for di, (m + 1) * (m + 1) square matrix for di,j , or (m + 1) * (m +
1) * (m + 1) array for di,j,k (i, j, k = 0, 1, . . .m)

a1, a2, a3 Numerator parameters

b Denominator parameter

lconst Scalar log c

Details

The denominator parameter b is assumed positive, whereas the numerator parameters can be posi-
tive or negative. The signs of the latter will be reflected in the result.

Value

Numeric with the same dimension with dks

22 hyperg_1F1_vec_b

hyperg_1F1_vec_b Internal C++ wrappers for GSL

Description

These are internal C++ functions which wrap hypergeometric functions from GSL with vector-
ization. These are for particular use cases in this package, and direct access by the user is not
assumed.

Usage

hyperg_1F1_vec_b(a, bvec, x)

hyperg_2F1_mat_a_vec_c(Amat, b, cvec, x)

Arguments

a, b Parameters of hypergeometric functions; passed as double

bvec, cvec Parameters of hypergeometric functions; passed as Rcpp::NumericVector

x Argument of hypergeometric functions; passed as double

Amat Parameter of hypergeometric functions; passed as Rcpp::NumericMatrix. Di-
mension must be square of the length of cvec.

Value

Return a list via Rcpp::List of the following:

$val Evaluation result, numeric

$err Absolute error, numeric

$status Error code, integer

In hyperg_1F1_vec_b, these are vectors from Rcpp::NumericVector and Rcpp::IntegerVector,
whereas in hyperg_2F1_mat_a_vec_c, they are matrices from Rcpp::NumericMatrix and Rcpp::IntegerMatrix.

Functions

• hyperg_1F1_vec_b(): wrapper of gsl_hyperg_1F1_e(), looping along bvec

• hyperg_2F1_mat_a_vec_c(): wrapper of gsl_hyperg_2F1_e(), looping along Amat and
recycling cvec

iseq 23

iseq Are these vectors equal?

Description

This internal function is used to determine whether two vectors/matrices have the same elements
(or, a vector/matrix is all equal to 0) using all.equal(). Attributes and dimensions are ignored as
they are passed as vectors using c().

Usage

iseq(x, y = rep.int(0, length(x)), tol = .Machine$double.eps * 100)

Arguments

x Main target vector/matrix in all.equal()

y current in all.equal(). Default zero vector.
tol Numeric to specify tolerance in all.equal()

See Also

all.equal

is_diagonal Is this matrix diagonal?

Description

This internal function is used to determine whether a square matrix is diagonal (within a specified
tolerance). Returns TRUE when the absolute values of all off-diagonal elements are below tol, using
all.equal().

Usage

is_diagonal(A, tol = .Machine$double.eps * 100, symmetric = FALSE)

Arguments

A Square matrix. No check is done.
tol Numeric to specify tolerance in all.equal()

symmetric If FALSE (default), sum of absolute values of the corresponding lower and upper
triangular elements are examined with a doubled tol. If TRUE, only the lower
triangular elements are examined assuming symmetry.

See Also

all.equal

24 new_qfrm

KiK Matrix square root and generalized inverse

Description

This internal function calculates the decomposition S = KKT for an n×n covariance matrix S, so
that K is an n×m matrix with m being the rank of S. Returns this K and its generalized inverse,
K−, in a list.

Usage

KiK(S, tol = .Machine$double.eps * 100)

Arguments

S Covariance matrix. Symmetry and positive (semi-)definiteness are checked.

tol Tolerance to determine the rank of S. Eigenvalues smaller than this value are
considered zero.

Details

At present, this utilizes svd(), although there may be better alternatives.

Value

List with K and iK, with the latter being K−

new_qfrm Construct qfrm object

Description

These are internal “constructor” functions used to make qfrm and qfpm objects, which are used as
a return value from the qfrm, qfmrm, and qfpm functions.

Usage

new_qfrm(
statistic,
error_bound = NULL,
terms = statistic,
seq_error = NULL,
exact = FALSE,
twosided = FALSE,
alphaout = FALSE,

new_qfrm 25

singular_arg = FALSE,
diminished = FALSE,
...,
class = character()

)

new_qfpm(statistic, exact = TRUE, ..., class = character())

Arguments

statistic Terminal value (partial sum) for the moment. When missing, obtained as sum(terms).

error_bound Terminal error bound. When missing, obtained as seq_error[length(seq_error)].

terms Terms in series expression for the moment along varying polynomial degrees

seq_error Vector of error bounds corresponding to cumsum(terms)

exact, twosided, alphaout, singular_arg
Logicals used to append attributes to the resultant error bound (see “Value”)

diminished Logical used to append attribute to the resultant statistic and terms (see “Value”)

... Additional arguments for accommodating subclasses

class Character vector to (pre-)append classes to the return value

Value

new_qfrm() and new_qfpm() return a list of class qfrm and c(qfpm, qfrm), respectively. These
classes are defined for the print and plot methods.

The return object is a list of 4 elements which are intended to be:

$statistic evaluation result (sum(terms))

$terms vector of 0th to mth order terms

$error_bound error bound of statistic

$seq_error vector of error bounds corresponding to partial sums (cumsum(terms))

When the result is exact, $terms can be of length 1 and equal to $statistic. This is always the
case for the qfpm class.

When the relevant flags are provided in the constructor, $error_bound and $seq_error have the
following attributes which control behaviors of the print and plot methods:

"exact" indicates whether the moment is exact

"twosided" indicates whether the error bounds are two-sided

"alphaout" indicates whether any of the scaling factors (alphaA, alphaB, alphaD) is outside
(0, 1], when error bound does not strictly hold

"singular" indicates whether the relevant argument matrix is (numerically) singular, in which
case the error bound is invalid

Similarly, when diminished = TRUE, $statistic and $terms have the attribute "diminished"
being TRUE, which indicates that numerical underflow/diminishing happened during scaling (see
“Scaling” in d1_i).

26 print.qfrm

See Also

qfrm, qfmrm, qfpm: functions that return objects of these classes

methods.qfrm: the print and plot methods

print.qfrm Methods for qfrm and qfpm objects

Description

Straightforward print and plot methods are defined for qfrm and qfpm objects which result from
the qfrm, qfmrm, and qfpm functions.

Usage

S3 method for class 'qfrm'
print(
x,
digits = getOption("digits"),
show_range = !is.null(x$error_bound),
...

)

S3 method for class 'qfpm'
print(x, digits = getOption("digits"), ...)

S3 method for class 'qfrm'
plot(
x,
add_error = length(x$seq_error) > 0,
add_legend = add_error,
ylim = x$statistic * ylim_f,
ylim_f = c(0.9, 1.1),
xlab = "Order of evaluation",
ylab = "Moment of ratio",
col_m = "royalblue4",
col_e = "tomato",
lwd_m = 1,
lwd_e = 1,
lty_m = 1,
lty_e = 2,
pos_leg = "topright",
...

)

print.qfrm 27

Arguments

x qfrm or qfpm object

digits Number of significant digits to be printed.

show_range Logical to specify whether the possible range for the moment is printed (when
available). Default TRUE when available.

... In the plot methods, passed to plot.default. In the print methods, ignored
(retained for the compatibility with the generic method).

add_error Logical to specify whether the sequence of error bounds is plotted (when avail-
able). Default TRUE when available.

add_legend Logical to specify whether a legend is added. Turned on by default when
add_error = TRUE.

ylim, ylim_f ylim is passed to plot.default. By default, this is automatically set to ylim_f
times the terminal value of the series expression (x$statistic). ylim_f is by
default c(0.9, 1.1).

xlab, ylab Passed to plot.default

col_m, col_e, lwd_m, lwd_e, lty_m, lty_e
col, lwd, and lty to plot the sequences of the moment (***_m) and its error
bound (***_e)

pos_leg Position of the legend, e.g., "topright", "bottomright", passed as the first
argument for legend

Details

The print methods simply display the moment x$statistic (typically a partial sum), its error
bound x$error_bound (when available), and the possible range of the moment (x$statistic to
x$statistic + x$error_bound in case of one-sided error bound; x$statistic - x$error_bound
to x$statistic + x$error_bound in case of two-sided).

The plot method is designed for quick inspection of the profile of the partial sum of the series along
varying orders cumsum(x$terms). When the object has a sequence for error bounds x$seq_error,
this is also shown with a broken line (by default). When the object has an exact moment (i.e.,
resulting from qfrm_ApIq_int() or the qfpm functions), a message is thrown to tell inspection of
the plot will not be required in this case.

Value

The print method invisibly returns the input.

The plot method is used for the side effect (and invisibly returns NULL).

See Also

new_qfrm: descriptions of the classes and their “constructors”

28 p_A1B1_Ed

Examples

nv <- 4
A <- diag(nv:1)
B <- diag(1:nv)
mu <- rep.int(1, nv)

res1 <- qfrm(A, B, p = 3, mu = mu)
print(res1)
print(res1, digits = 5)
print(res1, digits = 10)

Default plot: ylim too narrow to see the error bound at this m
plot(res1)

With extended ylim
plot(res1, ylim_f = c(0.8, 1.2), pos_leg = "topleft")

In this case, it is easy to increase m
(res2 <- qfrm(A, B, p = 3, mu = mu, m = 200))
plot(res2)

p_A1B1_Ed Internal C++ functions

Description

These are internal C++ functions called from corresponding R functions when use_cpp = TRUE.
Direct access by the user is not assumed. All parameters are assumed to be appropriately structured.

Usage

p_A1B1_Ed(
quantile,
A,
B,
mu,
m,
stop_on_error,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

p_A1B1_El(
quantile,
A,
B,

p_A1B1_Ed 29

mu,
m,
stop_on_error,
thr_margin = 100L,
nthreads = 0L,
tol_zero = 2.2e-14

)

p_A1B1_Ec(
quantile,
A,
B,
mu,
m,
stop_on_error,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

d_A1I1_Ed(quantile, LA, m, thr_margin = 100)

p_imhof_Ed(
quantile,
A,
B,
mu,
autoscale_args,
stop_on_error,
tol_zero,
epsabs,
epsrel,
limit

)

d_broda_Ed(
quantile,
A,
B,
mu,
autoscale_args,
stop_on_error,
tol_zero,
epsabs,
epsrel,
limit

)

30 p_A1B1_Ed

d_butler_Ed(
quantile,
A,
B,
mu,
order_spa,
stop_on_error,
tol_zero,
epsabs,
epsrel,
maxiter

)

p_butler_Ed(
quantile,
A,
B,
mu,
order_spa,
stop_on_error,
tol_zero,
epsabs,
epsrel,
maxiter

)

Ap_int_E(A, mu, p_ = 1, thr_margin = 100, tol_zero = 2.2e-14)

ABpq_int_E(A, LB, mu, p_ = 1, q_ = 1, thr_margin = 100, tol_zero = 2.2e-14)

ABDpqr_int_E(
A,
LB,
D,
mu,
p_ = 1,
q_ = 1,
r_ = 1,
thr_margin = 100,
tol_zero = 2.2e-14

)

ApIq_int_cE(A, p_ = 1, q_ = 1, thr_margin = 100)

ApIq_int_nE(A, mu, p_ = 1, q_ = 1, thr_margin = 100)

ApIq_npi_cE(
LA,

p_A1B1_Ed 31

bA,
p_ = 1,
q_ = 1,
m = 100L,
error_bound = TRUE,
thr_margin = 100

)

ApIq_npi_nEd(
LA,
bA,
mu,
p_ = 1,
q_ = 1,
m = 100L,
thr_margin = 100,
nthreads = 1L

)

ApBq_int_E(
A,
LB,
bB,
mu,
p_ = 1,
q_ = 1,
m = 100L,
error_bound = TRUE,
thr_margin = 100,
tol_zero = 2.2e-14

)

ApBq_npi_Ed(
A,
LB,
bA,
bB,
mu,
p_ = 1,
q_ = 1,
m = 100L,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBIqr_int_cEd(
A,

32 p_A1B1_Ed

LB,
bB,
p_ = 1,
q_ = 1,
r_ = 1,
m = 100L,
error_bound = TRUE,
thr_margin = 100,
tol_zero = 2.2e-14

)

ApBIqr_int_nEd(
A,
LB,
bB,
mu,
p_ = 1,
q_ = 1,
r_ = 1,
m = 100L,
error_bound = TRUE,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBIqr_npi_Ed(
A,
LB,
bA,
bB,
mu,
p_ = 1,
q_ = 1,
r_ = 1,
m = 100L,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

IpBDqr_gen_Ed(
LB,
D,
bB,
bD,
mu,
p_ = 1,

p_A1B1_Ed 33

q_ = 1,
r_ = 1,
m = 100L,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBDqr_int_Ed(
A,
LB,
D,
bB,
bD,
mu,
p_ = 1,
q_ = 1,
r_ = 1,
m = 100L,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBDqr_npi_Ed(
A,
LB,
D,
bA,
bB,
bD,
mu,
p_ = 1,
q_ = 1,
r_ = 1,
m = 100L,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApIq_npi_nEc(
LA,
bA,
mu,
p_ = 1,
q_ = 1,
m = 100L,

34 p_A1B1_Ed

thr_margin = 100,
nthreads = 1L

)

ApBq_npi_Ec(
A,
LB,
bA,
bB,
mu,
p_ = 1,
q_ = 1,
m = 100L,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBIqr_int_nEc(
A,
LB,
bB,
mu,
p_ = 1,
q_ = 1,
r_ = 1,
m = 100L,
error_bound = TRUE,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBIqr_npi_Ec(
A,
LB,
bA,
bB,
mu,
p_ = 1,
q_ = 1,
r_ = 1,
m = 100L,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

p_A1B1_Ed 35

IpBDqr_gen_Ec(
LB,
D,
bB,
bD,
mu,
p_ = 1,
q_ = 1,
r_ = 1,
m = 100L,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBDqr_int_Ec(
A,
LB,
D,
bB,
bD,
mu,
p_ = 1,
q_ = 1,
r_ = 1,
m = 100L,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBDqr_npi_Ec(
A,
LB,
D,
bA,
bB,
bD,
mu,
p_ = 1,
q_ = 1,
r_ = 1,
m = 100L,
thr_margin = 100,
nthreads = 0L,
tol_zero = 2.2e-14

)

36 p_A1B1_Ed

ApIq_npi_nEl(
LA,
bA,
mu,
p_ = 1L,
q_ = 1L,
m = 100L,
thr_margin = 100L,
nthreads = 1L

)

ApBq_npi_El(
A,
LB,
bA,
bB,
mu,
p_ = 1L,
q_ = 1L,
m = 100L,
thr_margin = 100L,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBIqr_int_nEl(
A,
LB,
bB,
mu,
p_ = 1L,
q_ = 1L,
r_ = 1L,
m = 100L,
error_bound = TRUE,
thr_margin = 100L,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBIqr_npi_El(
A,
LB,
bA,
bB,
mu,
p_ = 1L,
q_ = 1L,

p_A1B1_Ed 37

r_ = 1L,
m = 100L,
thr_margin = 100L,
nthreads = 0L,
tol_zero = 2.2e-14

)

IpBDqr_gen_El(
LB,
D,
bB,
bD,
mu,
p_ = 1L,
q_ = 1L,
r_ = 1L,
m = 100L,
thr_margin = 100L,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBDqr_int_El(
A,
LB,
D,
bB,
bD,
mu,
p_ = 1L,
q_ = 1L,
r_ = 1L,
m = 100L,
thr_margin = 100L,
nthreads = 0L,
tol_zero = 2.2e-14

)

ApBDqr_npi_El(
A,
LB,
D,
bA,
bB,
bD,
mu,
p_ = 1L,
q_ = 1L,

38 p_A1B1_Ed

r_ = 1L,
m = 100L,
thr_margin = 100L,
nthreads = 0L,
tol_zero = 2.2e-14

)

rqfpE(nit, A, B, D, p_, q_, r_, mu, Sigma)

Arguments

quantile Scalar of quantile q, passed as double

A, B, D Argument matrices passed as Eigen::Matrix. Symmetry is assumed.

mu Mean vector µ for x passed as Eigen::Array. For d_broda_Ed(), assumed to
be rotated by the eigenvectors of A− qB

m Integer to specify the order of polynomials at which the series expression is
truncated. Passed as Eigen::Index (aka std::ptrdiff_t or long long int)

stop_on_error bool to specify whether execution is stopped upon error in numerical integration
or root finding

thr_margin Optional argument to adjust the threshold for scaling. See “Scaling” in d1_i.

nthreads int to specify the number of threads in OpenMP-enabled functions. See “Mul-
tithreading” in qfrm.

tol_zero Tolerance against which numerical zero is determined

LA, LB Eigenvalues of the argument matrices passed as Eigen::Array

autoscale_args Factor to which the largest absolute eigenvalue of A − qB is scaled, passed as
double

epsrel, epsabs, limit, maxiter
Optional arguments passed to gsl_integration_qagi() or gsl_root_test_delta()

order_spa int to specify order of saddlepoint approximation

p_, q_, r_ Exponents for A, B, and D. Passed as double or long double.

bA, bB, bD Scaling coefficients for A, B, and D. Passed as double or long double.

error_bound bool to specify whether the error bound is returned

nit int to specify the number of iteration or sample size

Sigma Covariance matrix Σ for x. Passed as Eigen::Matrix.

Details

ApIq_int_nmE() calls the C function gsl_sf_hyperg_1F1() from GSL via RcppGSL.

Value

All return a list via Rcpp::List of the following (as appropriate):

$ans Exact moment, from double or long double

p_A1B1_Ed 39

$ansseq Series for the moment, from Eigen::Array

$errseq Series of errors, from Eigen::Array

$twosided Logical, from bool

$dimnished Logical, from bool

Functions

• p_A1B1_Ed(): pqfm_A1B1(), double

• p_A1B1_El(): pqfm_A1B1(), long double

• p_A1B1_Ec(): pqfm_A1B1(), coefficient-wise scaling

• d_A1I1_Ed(): dqfm_A1I1()

• p_imhof_Ed(): pqfm_imhof()

• d_broda_Ed(): dqfm_broda()

• d_butler_Ed(): dqfm_butler()

• p_butler_Ed(): pqfm_butler()

• Ap_int_E(): qfm_Ap_int()

• ABpq_int_E(): qfpm_ABpq_int()

• ABDpqr_int_E(): qfpm_ABDpqr_int()

• ApIq_int_cE(): qfrm_ApIq_int(), central

• ApIq_int_nE(): qfrm_ApIq_int(), noncentral

• ApIq_npi_cE(): qfrm_ApIq_npi(), central

• ApIq_npi_nEd(): qfrm_ApIq_npi(), noncentral, double

• ApBq_int_E(): qfrm_ApBq_int()

• ApBq_npi_Ed(): qfrm_ApBq_npi(), double

• ApBIqr_int_cEd(): qfmrm_ApBIqr_int(), central

• ApBIqr_int_nEd(): qfmrm_ApBIqr_int(), noncentral, double

• ApBIqr_npi_Ed(): qfmrm_ApBIqr_npi(), double

• IpBDqr_gen_Ed(): qfmrm_IpBDqr_gen(), double

• ApBDqr_int_Ed(): qfmrm_ApBDqr_int(), double

• ApBDqr_npi_Ed(): qfmrm_ApBDqr_npi(), double

• ApIq_npi_nEc(): qfrm_ApIq_npi(), noncentral, coefficient-wise scaling

• ApBq_npi_Ec(): qfrm_ApBq_npi(), coefficient-wise scaling

• ApBIqr_int_nEc(): qfmrm_ApBIqr_int(), noncentral, coefficient-wise scaling

• ApBIqr_npi_Ec(): qfmrm_ApBIqr_npi(), coefficient-wise scaling

• IpBDqr_gen_Ec(): qfmrm_IpBDqr_gen(), double

• ApBDqr_int_Ec(): qfmrm_ApBDqr_int(), coefficient-wise scaling

• ApBDqr_npi_Ec(): qfmrm_ApBDqr_npi(), coefficient-wise scaling

• ApIq_npi_nEl(): qfrm_ApIq_npi(), noncentral, long double

40 qfmrm

• ApBq_npi_El(): qfrm_ApBq_npi(), long double

• ApBIqr_int_nEl(): qfmrm_ApBIqr_int(), noncentral, long double

• ApBIqr_npi_El(): qfmrm_ApBIqr_npi(), long double

• IpBDqr_gen_El(): qfmrm_IpBDqr_gen(), long double

• ApBDqr_int_El(): qfmrm_ApBDqr_int(), long double

• ApBDqr_npi_El(): qfmrm_ApBDqr_npi(), long double

• rqfpE(): rqfp()

qfmrm Moment of multiple ratio of quadratic forms in normal variables

Description

qfmrm() is a front-end function to obtain the (compound) moment of a multiple ratio of quadratic
forms in normal variables in the following special form: E

(
(xTAx)p

(xTBx)q(xTDx)r

)
, where x ∼ Nn(µ,Σ).

Like qfrm(), this function calls one of the following “internal” functions for actual calculation, as
appropriate.

qfmrm_ApBIqr_int(): For D = In and positive-integral p

qfmrm_ApBIqr_npi(): For D = In and non-integral p

qfmrm_IpBDqr_gen(): For A = In

qfmrm_ApBDqr_int(): For general A, B, and D, and positive-integral p

qfmrm_ApBDqr_npi(): For general A, B, and D, and non-integral p

Usage

qfmrm(
A,
B,
D,
p = 1,
q = p/2,
r = q,
m = 100L,
mu = rep.int(0, n),
Sigma = diag(n),
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
...

)

qfmrm_ApBIqr_int(
A,
B,

qfmrm 41

p = 1,
q = 1,
r = 1,
m = 100L,
mu = rep.int(0, n),
error_bound = TRUE,
check_convergence = c("relative", "strict_relative", "absolute", "none"),
use_cpp = TRUE,
cpp_method = c("double", "long_double", "coef_wise"),
nthreads = 0,
alphaB = 1,
tol_conv = .Machine$double.eps^(1/4),
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
thr_margin = 100

)

qfmrm_ApBIqr_npi(
A,
B,
p = 1,
q = 1,
r = 1,
m = 100L,
mu = rep.int(0, n),
check_convergence = c("relative", "strict_relative", "absolute", "none"),
use_cpp = TRUE,
cpp_method = c("double", "long_double", "coef_wise"),
nthreads = 0,
alphaA = 1,
alphaB = 1,
tol_conv = .Machine$double.eps^(1/4),
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
thr_margin = 100

)

qfmrm_IpBDqr_gen(
B,
D,
p = 1,
q = 1,
r = 1,
mu = rep.int(0, n),
m = 100L,
check_convergence = c("relative", "strict_relative", "absolute", "none"),
use_cpp = TRUE,
cpp_method = c("double", "long_double", "coef_wise"),

42 qfmrm

nthreads = 0,
alphaB = 1,
alphaD = 1,
tol_conv = .Machine$double.eps^(1/4),
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
thr_margin = 100

)

qfmrm_ApBDqr_int(
A,
B,
D,
p = 1,
q = 1,
r = 1,
m = 100L,
mu = rep.int(0, n),
check_convergence = c("relative", "strict_relative", "absolute", "none"),
use_cpp = TRUE,
cpp_method = c("double", "long_double", "coef_wise"),
nthreads = 0,
alphaB = 1,
alphaD = 1,
tol_conv = .Machine$double.eps^(1/4),
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
thr_margin = 100

)

qfmrm_ApBDqr_npi(
A,
B,
D,
p = 1,
q = 1,
r = 1,
m = 100L,
mu = rep.int(0, n),
check_convergence = c("relative", "strict_relative", "absolute", "none"),
use_cpp = TRUE,
cpp_method = c("double", "long_double", "coef_wise"),
nthreads = 0,
alphaA = 1,
alphaB = 1,
alphaD = 1,
tol_conv = .Machine$double.eps^(1/4),
tol_zero = .Machine$double.eps * 100,

qfmrm 43

tol_sing = tol_zero,
thr_margin = 100

)

Arguments

A, B, D Argument matrices. Should be square. Will be automatically symmetrized.
p, q, r Exponents for A, B, and D, respectively. By default, q equals p/2 and r equals

q. If unsure, specify all explicitly.
m Order of polynomials at which the series expression is truncated. M in Hillier

et al. (2009, 2014).
mu Mean vector µ for x
Sigma Covariance matrix Σ for x. Accommodated only by the front-end qfmrm(). See

“Details” in qfrm.
tol_zero Tolerance against which numerical zero is determined. Used to determine, e.g.,

whether mu is a zero vector, A or B equals the identity matrix, etc.
tol_sing Tolerance against which matrix singularity and rank are determined. The eigen-

values smaller than this are considered zero.
... Additional arguments in the front-end qfmrm() will be passed to the appropriate

“internal” function.
error_bound Logical to specify whether an error bound is returned (if available).
check_convergence

Specifies how numerical convergence is checked (see “Details”). Options:
"relative" default; magnitude of the last term of the series relative to the sum

is compared with tol_conv

"strict_relative" or TRUE same, but stricter than default by setting tol_conv
= .Machine$double.eps (unless a smaller value is specified by the user)

"absolute" absolute magnitude of the last term is compared with tol_conv

"none" or FALSE skips convergence check
use_cpp Logical to specify whether the calculation is done with C++ functions via Rcpp.

TRUE by default.
cpp_method Method used in C++ calculations to avoid numerical overflow/underflow (see

“Details”). Options:
"double" default; fastest but prone to underflow in some conditions
"long_double" same algorithm but using the long double variable type; ro-

bust but slow and memory-inefficient
"coef_wise" coefficient-wise scaling algorithm; most robust but variably slow

nthreads Number of threads used in OpenMP-enabled C++ functions. See “Multithread-
ing” in qfrm.

tol_conv Tolerance against which numerical convergence of series is checked. Used with
check_convergence.

thr_margin Optional argument to adjust the threshold for scaling (see “Scaling” in d1_i).
Passed to internal functions (d1_i, d2_ij, d3_ijk) or their C++ equivalents.

alphaA, alphaB, alphaD
Factors for the scaling constants for A, B, and D, respectively. See “Details” in
qfrm.

44 qfmrm

Details

The usage of these functions is similar to qfrm, to which the user is referred for documentation. It
is assumed that B ̸= D (otherwise, the problem reduces to a simple ratio).

When B is identity or missing, this and its exponent q will be swapped with D and r, respectively,
before qfmrm_ApBIqr_***() is called.

The existence conditions for the moments of this multiple ratio can be reduced to those for a simple
ratio, provided that one of the null spaces of B and D is a subspace of the other (including the
case they are null). The conditions of Bao and Kan (2013: proposition 1) can then be applied by
replacing q and m there by q + r and min (rank(B), rank(D)), respectively (see also Smith 1989:
p. 258 for nonsingular B, D). An error is thrown if these conditions are not met in this case.
Otherwise (i.e., B and D are both singular and neither of their null spaces is a subspace of the
other), it seems difficult to define general moment existence conditions. A sufficient condition can
be obtained by applying the same proposition with a new denominator matrix whose null space is
union of those of B and D (Watanabe, 2023). A warning is thrown if that condition is not met in
this case.

Most of these functions, excepting qfmrm_ApBIqr_int() with zero mu, involve evaluation of mul-
tiple series, which can suffer from numerical overflow and underflow (see “Scaling” in d1_i and
“Details” in qfrm). To avoid this, cpp_method = "long_double" or "coef_wise" options can be
used (see “Details” in qfrm).

Value

A qfrm object, as in qfrm() functions.

References

Bao, Y. and Kan, R. (2013) On the moments of ratios of quadratic forms in normal random variables.
Journal of Multivariate Analysis, 117, 229–245. doi:10.1016/j.jmva.2013.03.002.

Smith, M. D. (1989). On the expectation of a ratio of quadratic forms in normal variables. Journal
of Multivariate Analysis, 31, 244–257. doi:10.1016/0047259X(89)900651.

Watanabe, J. (2023) Exact expressions and numerical evaluation of average evolvability measures
for characterizing and comparing G matrices. Journal of Mathematical Biology, 86, 95. doi:10.1007/
s00285023019308.

See Also

qfrm for simple ratio

Examples

Some symmetric matrices and parameters
nv <- 4
A <- diag(nv:1)
B <- diag(sqrt(1:nv))
D <- diag((1:nv)^2 / nv)
mu <- nv:1 / nv
Sigma <- matrix(0.5, nv, nv)
diag(Sigma) <- 1

https://doi.org/10.1016/j.jmva.2013.03.002
https://doi.org/10.1016/0047-259X%2889%2990065-1
https://doi.org/10.1007/s00285-023-01930-8
https://doi.org/10.1007/s00285-023-01930-8

qfpm 45

Expectation of (x^T A x)^2 / (x^T B x) (x^T x) where x ~ N(0, I)
(res1 <- qfmrm(A, B, p = 2, q = 1, r = 1))
plot(res1)

The above internally calls the following:
qfmrm_ApBIqr_int(A, B, p = 2, q = 1, r = 1) ## The same

Similar result with different expression
This is a suboptimal option and throws a warning
qfmrm_ApBIqr_npi(A, B, p = 2, q = 1, r = 1)

Expectation of (x^T A x) / (x^T B x)^(1/2) (x^T D x)^(1/2) where x ~ N(0, I)
(res2 <- qfmrm(A, B, D, p = 1, q = 1/2, r = 1/2))
plot(res2)

The above internally calls the following:
qfmrm_ApBDqr_int(A, B, D, p = 1, q = 1/2, r = 1/2) ## The same

Average response correlation between A and B
(res3 <- qfmrm(crossprod(A, B), crossprod(A), crossprod(B),

p = 1, q = 1/2, r = 1/2))
plot(res3)

Same, but with x ~ N(mu, Sigma)
(res4 <- qfmrm(crossprod(A, B), crossprod(A), crossprod(B),

p = 1, q = 1/2, r = 1/2, mu = mu, Sigma = Sigma))
plot(res4)

Average autonomy of D
(res5 <- qfmrm(B = D, D = solve(D), p = 2, q = 1, r = 1))
plot(res5)

qfpm Moment of (product of) quadratic forms in normal variables

Description

Functions to obtain (compound) moments of a product of quadratic forms in normal variables, i.e.,
E
(
(xTAx)p(xTBx)q(xTDx)r

)
, where x ∼ Nn(µ,Σ).

qfm_Ap_int() is for q = r = 0 (simple moment)

qfpm_ABpq_int() is for r = 0

qfpm_ABDpqr_int() is for the product of all three powers

Usage

qfm_Ap_int(
A,

46 qfpm

p = 1,
mu = rep.int(0, n),
Sigma = diag(n),
use_cpp = TRUE,
cpp_method = "double",
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero

)

qfpm_ABpq_int(
A,
B,
p = 1,
q = 1,
mu = rep.int(0, n),
Sigma = diag(n),
use_cpp = TRUE,
cpp_method = "double",
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero

)

qfpm_ABDpqr_int(
A,
B,
D,
p = 1,
q = 1,
r = 1,
mu = rep.int(0, n),
Sigma = diag(n),
use_cpp = TRUE,
cpp_method = "double",
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero

)

Arguments

A, B, D Argument matrices. Should be square. Will be automatically symmetrized.

p, q, r Exponents for A, B, and D, respectively. By default, these are set to the same
value. If unsure, specify all explicitly.

mu Mean vector µ for x

Sigma Covariance matrix Σ for x

use_cpp Logical to specify whether the calculation is done with C++ functions via Rcpp.
TRUE by default.

cpp_method Variable type used in C++ calculations. In these functions this is ignored.

qfpm 47

tol_zero Tolerance against which numerical zero is determined. Used to determine, e.g.,
whether mu is a zero vector, A or B equals the identity matrix, etc.

tol_sing Tolerance against which matrix singularity and rank are determined. The eigen-
values smaller than this are considered zero.

Details

These functions implement the super-short recursion algorithms described in Hillier et al. (2014:
sec. 3.1–3.2 and 4). At present, only positive integers are accepted as exponents (negative exponents
yield ratios, of course). All these yield exact results.

Value

A qfpm object which has the same elements as those returned by the qfrm functions. Use $statistic
to access the value of the moment.

See Also

qfrm and qfmrm for moments of ratios

Examples

Some symmetric matrices and parameters
nv <- 4
A <- diag(nv:1)
B <- diag(sqrt(1:nv))
D <- diag((1:nv)^2 / nv)
mu <- nv:1 / nv
Sigma <- matrix(0.5, nv, nv)
diag(Sigma) <- 1

Expectation of (x^T A x)^2 where x ~ N(0, I)
qfm_Ap_int(A, 2)

This is the same but obviously less efficient
qfpm_ABpq_int(A, p = 2, q = 0)

Expectation of (x^T A x) (x^T B x) (x^T D x) where x ~ N(0, I)
qfpm_ABDpqr_int(A, B, D, 1, 1, 1)

Expectation of (x^T A x) (x^T B x) (x^T D x) where x ~ N(mu, Sigma)
qfpm_ABDpqr_int(A, B, D, 1, 1, 1, mu = mu, Sigma = Sigma)

Expectations of (x^T x)^2 where x ~ N(0, I) and x ~ N(mu, I)
i.e., roundabout way to obtain moments of
central and noncentral chi-square variables
qfm_Ap_int(diag(nv), 2)
qfm_Ap_int(diag(nv), 2, mu = mu)

48 qfrm

qfrm Moment of ratio of quadratic forms in normal variables

Description

qfrm() is a front-end function to obtain the (compound) moment of a ratio of quadratic forms in
normal variables, i.e., E

(
(xTAx)p

(xTBx)q

)
, where x ∼ Nn(µ,Σ). Internally, qfrm() calls one of the

following functions which does the actual calculation, depending on A, B, and p. Usually the best
one is automatically selected.

qfrm_ApIq_int(): For B = In and positive-integral p.

qfrm_ApIq_npi(): For B = In and non-positive-integral p (fraction or negative).

qfrm_ApBq_int(): For general B and positive-integral p.

qfrm_ApBq_npi(): For general B and non-integral p.

Usage

qfrm(
A,
B,
p = 1,
q = p,
m = 100L,
mu = rep.int(0, n),
Sigma = diag(n),
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
...

)

qfrm_ApIq_int(
A,
p = 1,
q = p,
m = 100L,
mu = rep.int(0, n),
use_cpp = TRUE,
exact_method = TRUE,
cpp_method = "double",
nthreads = 1,
tol_zero = .Machine$double.eps * 100,
thr_margin = 100

)

qfrm_ApIq_npi(
A,

qfrm 49

p = 1,
q = p,
m = 100L,
mu = rep.int(0, n),
error_bound = TRUE,
check_convergence = c("relative", "strict_relative", "absolute", "none"),
use_cpp = TRUE,
cpp_method = c("double", "long_double", "coef_wise"),
nthreads = 1,
alphaA = 1,
tol_conv = .Machine$double.eps^(1/4),
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
thr_margin = 100

)

qfrm_ApBq_int(
A,
B,
p = 1,
q = p,
m = 100L,
mu = rep.int(0, n),
error_bound = TRUE,
check_convergence = c("relative", "strict_relative", "absolute", "none"),
use_cpp = TRUE,
cpp_method = "double",
nthreads = 1,
alphaB = 1,
tol_conv = .Machine$double.eps^(1/4),
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
thr_margin = 100

)

qfrm_ApBq_npi(
A,
B,
p = 1,
q = p,
m = 100L,
mu = rep.int(0, n),
check_convergence = c("relative", "strict_relative", "absolute", "none"),
use_cpp = TRUE,
cpp_method = c("double", "long_double", "coef_wise"),
nthreads = 0,
alphaA = 1,
alphaB = 1,

50 qfrm

tol_conv = .Machine$double.eps^(1/4),
tol_zero = .Machine$double.eps * 100,
tol_sing = tol_zero,
thr_margin = 100

)

Arguments

A, B Argument matrices. Should be square. Will be automatically symmetrized.

p, q Exponents corresponding to A and B, respectively. When only one is provided,
the other is set to the same value. Should be length-one numeric (see “Details”
for further conditions).

m Order of polynomials at which the series expression is truncated. M in Hillier
et al. (2009, 2014).

mu Mean vector µ for x

Sigma Covariance matrix Σ for x. Accommodated only by the front-end qfrm(). See
“Details”.

tol_zero Tolerance against which numerical zero is determined. Used to determine, e.g.,
whether mu is a zero vector, A or B equals the identity matrix, etc.

tol_sing Tolerance against which matrix singularity and rank are determined. The eigen-
values smaller than this are considered zero.

... Additional arguments in the front-end qfrm() will be passed to the appropriate
“internal” function.

use_cpp Logical to specify whether the calculation is done with C++ functions via Rcpp.
TRUE by default.

exact_method Logical to specify whether the exact method is used in qfrm_ApIq_int() (see
“Details”).

cpp_method Method used in C++ calculations to avoid numerical overflow/underflow (see
“Details”). Options:

"double" default; fastest but prone to underflow in some conditions
"long_double" same algorithm but using the long double variable type; ro-

bust but slow and memory-inefficient
"coef_wise" coefficient-wise scaling algorithm; most robust but variably slow

nthreads Number of threads used in OpenMP-enabled C++ functions. 0 or any negative
value is special and means one-half of the number of processors detected. See
“Multithreading” in “Details”.

thr_margin Optional argument to adjust the threshold for scaling (see “Scaling” in d1_i).
Passed to internal functions (d1_i, d2_ij, d3_ijk) or their C++ equivalents.

error_bound Logical to specify whether an error bound is returned (if available).
check_convergence

Specifies how numerical convergence is checked (see “Details”). Options:

"relative" default; magnitude of the last term of the series relative to the sum
is compared with tol_conv

qfrm 51

"strict_relative" or TRUE same, but stricter than default by setting tol_conv
= .Machine$double.eps (unless a smaller value is specified by the user)

"absolute" absolute magnitude of the last term is compared with tol_conv

"none" or FALSE skips convergence check

alphaA, alphaB Factors for the scaling constants for A and B, respectively. See “Details”.

tol_conv Tolerance against which numerical convergence of series is checked. Used with
check_convergence.

Details

These functions use infinite series expressions based on the joint moment-generating function (with
the top-order zonal/invariant polynomials) (see Smith 1989, Hillier et al. 2009, 2014; Bao and
Kan 2013), and the results are typically partial (truncated) sums from these infinite series, which
necessarily involve truncation errors. (An exception is when B = In and p is a positive integer, the
case handled by qfrm_ApIq_int().)

The returned value is a list consisting of the truncated sequence up to the order specified by m, its
sum, and error bounds corresponding to these (see “Values”). The print method only displays the
terminal partial sum and its error bound (when available). Use plot() for visual inspection, or the
ordinary list element access as required.

In most cases, p and q must be nonnegative (in addition, p must be an integer in qfrm_ApIq_int()
and qfrm_ApBq_int() when used directly), and an error is thrown otherwise. The only exception is
qfrm_ApIq_npi() which accepts negative exponents to accommodate (xTx)q

(xTAx)p . Even in the latter
case, the exponents must have the same sign. (Technically, not all of these conditions are necessary
for the mathematical results to hold, but they are enforced for simplicity).

When error_bound = TRUE (default), qfrm_ApBq_int() evaluates a truncation error bound follow-
ing Hillier et al. (2009: theorem 6) or Hillier et al. (2014: theorem 7) (for zero and nonzero means,
respectively). qfrm_ApIq_npi() implements similar error bounds. No error bound is known for
qfrm_ApBq_npi() to the author’s knowledge.

For situations when the error bound is unavailable, a very rough check of numerical convergence is
also conducted; a warning is thrown if the magnitude of the last term does not look small enough.
By default, its relative magnitude to the sum is compared with the tolerance controlled by tol_conv,
whose default is .Machine$double.eps^(1/4) (= ~1.2e-04) (see check_convergence).

When Sigma is provided, the quadratic forms are transformed into a canonical form; that is, using
the decomposition Σ = KKT , where the number of columns m of K equals the rank of Σ,
Anew = KTAK, Bnew = KTBK, and xnew = K−x ∼ Nm(K−µ, Im). qfrm() handles this
by transforming A, B, and mu and calling itself recursively with these new arguments. Note that the
“internal” functions do not accommodate Sigma (the error for unused arguments will happen). For
singular Σ, one of the following conditions must be met for the above transformation to be valid:
1) µ is in the range of Σ; 2) A and B are in the range of Σ; or 3) Aµ = Bµ = 0n. An error is
thrown if none is met with a singular Sigma.

The existence of the moment is assessed by the eigenstructures of A and B, p, and q, according to
Bao and Kan (2013: proposition 1). An error will result if the conditions are not met.

Straightforward implementation of the original recursive algorithms can suffer from numerical
overflow when the problem is large. Internal functions (d1_i, d2_ij, d3_ijk) are designed to
avoid overflow by order-wise scaling. However, when evaluation of multiple series is required

52 qfrm

(qfrm_ApIq_npi() with nonzero mu and qfrm_ApBq_npi()), the scaling occasionally yields un-
derflow/diminishing of some terms to numerical 0, causing inaccuracy. A warning is thrown in
this case. (See also “Scaling” in d1_i.) To avoid this problem, the C++ versions of these func-
tions have two workarounds, as controlled by cpp_method. 1) The "long_double" option uses the
long double variable type instead of the regular double. This is generally slow and most memory-
inefficient. 2) The "coef_wise" option uses a coefficient-wise scaling algorithm with the double
variable type. This is generally robust against underflow issues. Computational time varies a lot
with conditions; generally only modestly slower than the "double" option, but can be the slowest
in some extreme conditions.

For the sake of completeness (only), the scaling parameters β (see the package vignette) can be
modified via the arguments alphaA and alphaB. These are the factors for the inverses of the largest
eigenvalues of A and B, respectively, and must be between 0 and 2. The default is 1, which
should suffice for most purposes. Values larger than 1 often yield faster convergence, but are not
recommended as the error bound will not strictly hold (see Hillier et al. 2009, 2014).

Multithreading:
All these functions use C++ versions to speed up computation by default. Furthermore, some
of the C++ functions, in particular those using more than one matrix arguments, are parallelized
with OpenMP (when available). Use the argument nthreads to control the number of OpenMP
threads. By default (nthreads = 0), one-half of the processors detected with omp_get_num_procs()
are used. This is except when all the argument matrices share the same eigenvectors and hence
the calculation only involves element-wise operations of eigenvalues. In that case, the calculation
is typically fast without parallelization, so nthreads is automatically set to 1 unless explicitly
specified otherwise; the user can still specify a larger value or 0 for (typically marginal) speed
gains in large problems.

Exact method for qfrm_ApIq_int():
An exact expression of the moment is available when p is integer and B = In (handled by
qfrm_ApIq_int()), whose expression involves a confluent hypergeometric function when µ is
nonzero (Hillier et al. 2014: theorem 4). There is an option (exact_method = FALSE) to use the
ordinary infinite series expression (Hillier et al. 2009), which is less accurate and slow.

Value

A qfrm object consisting of the following:

$statistic evaluation result (sum(terms))

$terms vector of 0th to mth order terms

$error_bound error bound of statistic

$seq_error vector of error bounds corresponding to partial sums (cumsum(terms))

References

Bao, Y. and Kan, R. (2013) On the moments of ratios of quadratic forms in normal random variables.
Journal of Multivariate Analysis, 117, 229–245. doi:10.1016/j.jmva.2013.03.002.

Hillier, G., Kan, R. and Wang, X. (2009) Computationally efficient recursions for top-order invariant
polynomials with applications. Econometric Theory, 25, 211–242. doi:10.1017/S0266466608090075.

https://doi.org/10.1016/j.jmva.2013.03.002
https://doi.org/10.1017/S0266466608090075

qfrm 53

Hillier, G., Kan, R. and Wang, X. (2014) Generating functions and short recursions, with applica-
tions to the moments of quadratic forms in noncentral normal vectors. Econometric Theory, 30,
436–473. doi:10.1017/S0266466613000364.

Smith, M. D. (1989) On the expectation of a ratio of quadratic forms in normal variables. Journal
of Multivariate Analysis, 31, 244–257. doi:10.1016/0047259X(89)900651.

Smith, M. D. (1993) Expectations of ratios of quadratic forms in normal variables: evaluating some
top-order invariant polynomials. Australian Journal of Statistics, 35, 271–282. doi:10.1111/j.1467-
842X.1993.tb01335.x.

See Also

qfmrm for multiple ratio

Examples

Some symmetric matrices and parameters
nv <- 4
A <- diag(nv:1)
B <- diag(sqrt(1:nv))
mu <- nv:1 / nv
Sigma <- matrix(0.5, nv, nv)
diag(Sigma) <- 1

Expectation of (x^T A x)^2 / (x^T x)^2 where x ~ N(0, I)
An exact expression is available
(res1 <- qfrm(A, p = 2))

The above internally calls the following:
qfrm_ApIq_int(A, p = 2) ## The same

Similar result with different expression
This is a suboptimal option and throws a warning
qfrm_ApIq_npi(A, p = 2)

Expectation of (x^T A x)^1/2 / (x^T x)^1/2 where x ~ N(0, I)
Note how quickly the series converges in this case
(res2 <- qfrm(A, p = 1/2))
plot(res2)

The above calls:
qfrm_ApIq_npi(A, p = 0.5)

This is not allowed (throws an error):
try(qfrm_ApIq_int(A, p = 0.5))

(x^T A x)^2 / (x^T B x)^3 where x ~ N(0, I)
(res3 <- qfrm(A, B, 2, 3))
plot(res3)

(x^T A x)^2 / (x^T B x)^2 where x ~ N(mu, I)
Note the two-sided error bound

https://doi.org/10.1017/S0266466613000364
https://doi.org/10.1016/0047-259X%2889%2990065-1
https://doi.org/10.1111/j.1467-842X.1993.tb01335.x
https://doi.org/10.1111/j.1467-842X.1993.tb01335.x

54 range_qfr

(res4 <- qfrm(A, B, 2, 2, mu = mu))
plot(res4)

(x^T A x)^2 / (x^T B x)^2 where x ~ N(mu, Sigma)
(res5 <- qfrm(A, B, p = 2, q = 2, mu = mu, Sigma = Sigma))
plot(res5)

Sigma is not allowed in the "internal" functions:
try(qfrm_ApBq_int(A, B, p = 2, q = 2, Sigma = Sigma))

In res5 above, the error bound didn't converge
Use larger m to evaluate higher-order terms
plot(print(qfrm(A, B, p = 2, q = 2, mu = mu, Sigma = Sigma, m = 300)))

range_qfr Get range of ratio of quadratic forms

Description

range_qfr(): internal function to obtain the possible range of a ratio of quadratic forms, xTAx
xTBx .

gen_eig() is an internal function to obtain generalized eigenvalues, i.e., roots of detA− λB = 0,
which are the eigenvalues of B−1A if B is nonsingular.

Usage

range_qfr(
A,
B,
eigB = eigen(B, symmetric = TRUE),
tol = .Machine$double.eps * 100,
t = 0.001

)

gen_eig(
A,
B,
eigB = eigen(B, symmetric = TRUE),
Ad = with(eigB, crossprod(crossprod(A, vectors), vectors)),
tol = .Machine$double.eps * 100,
t = 0.001

)

Arguments

A, B Symmetric matrices. No check is done.

eigB Result of eigen(B) can be passed when already computed

rqfr 55

tol Tolerance to determine numerical zero

t Tolerance used to determine whether estimates are numerically stable; t in Jen-
nings et al. (1978).

Ad A rotated with eigenvectors of B can be passed when already computed

Details

gen_eig() solves the generalized eigenvalue problem with Jennings et al.’s (1978) algorithm. The
sign of infinite eigenvalue (when present) cannot be determined from this algorithm, so is deduced
as follows: (1) A and B are rotated by the eigenvectors of B; (2) the submatrix of rotated A
corresponding to the null space of B is examined; (3) if this is nonnegative (nonpositive) definite,
the result must have positive (negative, resp.) infinity; if this is indefinite, the result must have both
positive and negative infinities; if this is (numerically) zero, the result must have NaN. The last case
is expeted to happen very rarely, as in this case Jennings algorithm would fail. This is where the
null space of B is a subspace of that of A, so that the range of ratio of quadratic forms can be
well-behaved. range_qfr() tries to detect this case and handle the range accordingly, but if that is
infeasible it returns c(-Inf, Inf).

References

Jennings, A., Halliday, J. and Cole, M. J. (1978) Solution of linear generalized eigenvalue problems
containing singular matrices. Journal of the Institute of Mathematics and Its Applications, 22, 401–
410. doi:10.1093/imamat/22.4.401.

rqfr Monte Carlo sampling of ratio/product of quadratic forms

Description

rqfr(), rqfmr(), and rqfp() calculate a random sample of a simple ratio, multiple ratio (of special
form), and product, respectively, of quadratic forms in normal variables of specified mean and
covariance (standard multivariate normal by default). These functions are primarily for empirical
verification of the analytic results provided in this package.

Usage

rqfr(nit = 1000L, A, B, p = 1, q = p, mu, Sigma, use_cpp = TRUE)

rqfmr(nit = 1000L, A, B, D, p = 1, q = p/2, r = q, mu, Sigma, use_cpp = TRUE)

rqfp(nit = 1000L, A, B, D, p = 1, q = 1, r = 1, mu, Sigma, use_cpp = TRUE)

https://doi.org/10.1093/imamat/22.4.401

56 rqfr

Arguments

nit Number of iteration or sample size. Should be an integer-alike of length 1.

A, B, D Argument matrices (see “Details”). Assumed to be square matrices of the same
order. When missing, set to the identity matrix. At least one of these must be
specified.

p, q, r Exponents for A, B, D, respectively (see “Details”). Assumed to be numeric of
length 1 each. See “Details” for default values.

mu Mean vector µ for x. Default zero vector.

Sigma Covariance matrix Σ for x. Default identity matrix. mu and Sigma are assumed
to be of the same order as the argument matrices.

use_cpp Logical to specify whether an C++ version is called or not. TRUE by default.

Details

These functions generate a random sample of (xTAx)p

(xTBx)q (rqfr()), (xTAx)p

(xTBx)q(xTDx)r (rqfmr()), and
(xTAx)p(xTBx)q(xTDx)r (rqfp()), where x ∼ Nn(µ,Σ). (Internally, rqfr() and rqfmr()
just call rqfp() with negative exponents.)

When only one of p and q is provided in rqfr(), the other (missing) one is set to the same value.

In rqfmr(), q and r are set to p/2 when both missing, and set to the same value when only one is
missing. When p is missing, this is set to be q + r. If unsure, specify all these explicitly.

In rqfp(), p, q and r are 1 by default, provided that the corresponding argument matrices are given.
If both an argument matrix and its exponent (e.g., D and r) are missing, the exponent is set to 0 so
that the factor be unity.

Value

Numeric vector of length nit.

See Also

qfrm and qfpm for analytic moments

dqfr for analytic distribution-related functions for simple ratios

Examples

p <- 4
A <- diag(1:p)
B <- diag(p:1)
D <- diag(sqrt(1:p))

By default B = I, p = q = 1;
i.e., (x^T A x) / (x^T x), x ~ N(0, I)
rqfr(5, A)

(x^T A x) / ((x^T B x)(x^T D x))^(1/2), x ~ N(0, I)
rqfmr(5, A, B, D, 1, 1/2, 1/2)

sum_counterdiag 57

(x^T A x), x ~ N(0, I)
rqfp(5, A)

(x^T A x) (x^T B x), x ~ N(0, I)
rqfp(5, A, B)

(x^T A x) (x^T B x) (x^T D x), x ~ N(0, I)
rqfp(5, A, B, D)

Example with non-standard normal
mu <- 1:p / p
Sigma <- matrix(0.5, p, p)
diag(Sigma) <- 1
rqfr(5, A, mu = 1:p / p, Sigma = Sigma)

Compare Monte Carlo sample and analytic expression
set.seed(3)
mcres <- rqfr(1000, A, p = 2)
mean(mcres)
(anres <- qfrm(A, p = 2))
stats::t.test(mcres, mu = anres$statistic)

sum_counterdiag Summing up counter-diagonal elements

Description

sum_counterdiag() sums up counter-diagonal elements of a square matrix from the upper-left; i.e.,
c(X[1, 1], X[1, 2] + X[2, 1], X[1, 3] + X[2, 2] + X[3, 1], ...) (or a sequence of

∑k
i=1 xi,k−i+1

for k = 1, 2, ...). sum_counterdiag3D() does a comparable in a 3D cubic array. No check is done
on the structure of X.

Usage

sum_counterdiag(X)

sum_counterdiag3D(X)

Arguments

X Square matrix or cubic array

58 tr

S_fromUL Make covariance matrix from eigenstructure

Description

This is an internal utility function to make covariance matrix from eigenvectors and eigenvalues.
Symmetry is assumed for the original matrix.

Usage

S_fromUL(evec, evalues)

Arguments

evec Matrix whose columns are eigenvectors

evalues Vector of eigenvalues

tr Matrix trace function

Description

This is an internal function. No check is done on the structure of X.

Usage

tr(X)

Arguments

X Square matrix whose trace is to be calculated

Index

a1_pk, 2
ABDpqr_int_E (p_A1B1_Ed), 28
ABpq_int_E (p_A1B1_Ed), 28
all.equal, 23
Ap_int_E (p_A1B1_Ed), 28
ApBDqr_int_Ec (p_A1B1_Ed), 28
ApBDqr_int_Ed (p_A1B1_Ed), 28
ApBDqr_int_El (p_A1B1_Ed), 28
ApBDqr_npi_Ec (p_A1B1_Ed), 28
ApBDqr_npi_Ed (p_A1B1_Ed), 28
ApBDqr_npi_El (p_A1B1_Ed), 28
ApBIqr_int_cEd (p_A1B1_Ed), 28
ApBIqr_int_nEc (p_A1B1_Ed), 28
ApBIqr_int_nEd (p_A1B1_Ed), 28
ApBIqr_int_nEl (p_A1B1_Ed), 28
ApBIqr_npi_Ec (p_A1B1_Ed), 28
ApBIqr_npi_Ed (p_A1B1_Ed), 28
ApBIqr_npi_El (p_A1B1_Ed), 28
ApBq_int_E (p_A1B1_Ed), 28
ApBq_npi_Ec (p_A1B1_Ed), 28
ApBq_npi_Ed (p_A1B1_Ed), 28
ApBq_npi_El (p_A1B1_Ed), 28
ApIq_int_cE (p_A1B1_Ed), 28
ApIq_int_nE (p_A1B1_Ed), 28
ApIq_npi_cE (p_A1B1_Ed), 28
ApIq_npi_nEc (p_A1B1_Ed), 28
ApIq_npi_nEd (p_A1B1_Ed), 28
ApIq_npi_nEl (p_A1B1_Ed), 28

d1_i, 3, 7, 8, 10, 16, 20, 25, 38, 43, 44, 50–52
d2_1j (d2_ij), 5
d2_1j_m (d2_ij), 5
d2_1j_v (d2_ij), 5
d2_ij, 4, 5, 5, 10, 11, 16, 43, 50, 51
d2_ij_m (d2_ij), 5
d2_ij_v (d2_ij), 5
d2_pj (d2_ij), 5
d2_pj_m (d2_ij), 5
d2_pj_v (d2_ij), 5
d3_ijk, 4, 5, 8, 8, 16, 43, 50, 51

d3_ijk_m (d3_ijk), 8
d3_ijk_v (d3_ijk), 8
d3_pjk (d3_ijk), 8
d3_pjk_m (d3_ijk), 8
d3_pjk_v (d3_ijk), 8
d_A1I1_Ed (p_A1B1_Ed), 28
d_broda_Ed (p_A1B1_Ed), 28
d_butler_Ed (p_A1B1_Ed), 28
davies, 16, 17
dqfr, 11, 56
dqfr_A1I1 (dqfr), 11
dqfr_broda (dqfr), 11
dqfr_butler (dqfr), 11
dtil1_i (d1_i), 3
dtil1_i_m (d1_i), 3
dtil1_i_v (d1_i), 3
dtil2_1q_m (dtil2_pq), 19
dtil2_1q_v (dtil2_pq), 19
dtil2_pq, 5, 8, 11, 19
dtil2_pq_m (dtil2_pq), 19
dtil2_pq_v (dtil2_pq), 19
dtil3_pqr (dtil2_pq), 19
dtil3_pqr_m (dtil2_pq), 19
dtil3_pqr_v (dtil2_pq), 19

gen_eig (range_qfr), 54
gsl_wrap (hyperg_1F1_vec_b), 22

h2_ij (d2_ij), 5
h2_ij_m (d2_ij), 5
h2_ij_v (d2_ij), 5
h3_ijk (d3_ijk), 8
h3_ijk_m (d3_ijk), 8
h3_ijk_v (d3_ijk), 8
hgs, 4, 21
hgs_1d (hgs), 21
hgs_2d (hgs), 21
hgs_3d (hgs), 21
hhat2_1j (d2_ij), 5
hhat2_1j_m (d2_ij), 5

59

60 INDEX

hhat2_1j_v (d2_ij), 5
hhat2_pj (d2_ij), 5
hhat2_pj_m (d2_ij), 5
hhat2_pj_v (d2_ij), 5
hhat3_pjk (d3_ijk), 8
hhat3_pjk_m (d3_ijk), 8
hhat3_pjk_v (d3_ijk), 8
htil2_1j (d2_ij), 5
htil2_1j_m (d2_ij), 5
htil2_1j_v (d2_ij), 5
htil2_pj (d2_ij), 5
htil2_pj_m (d2_ij), 5
htil2_pj_v (d2_ij), 5
htil3_pjk (d3_ijk), 8
htil3_pjk_m (d3_ijk), 8
htil3_pjk_v (d3_ijk), 8
hyperg_1F1_vec_b, 22
hyperg_2F1_mat_a_vec_c

(hyperg_1F1_vec_b), 22

imhof, 16, 17
IpBDqr_gen_Ec (p_A1B1_Ed), 28
IpBDqr_gen_Ed (p_A1B1_Ed), 28
IpBDqr_gen_El (p_A1B1_Ed), 28
is_diagonal, 23
iseq, 23

KiK, 24

legend, 27

methods.qfrm, 26
methods.qfrm (print.qfrm), 26

new_qfpm (new_qfrm), 24
new_qfrm, 24, 27

p_A1B1_Ec (p_A1B1_Ed), 28
p_A1B1_Ed, 28
p_A1B1_El (p_A1B1_Ed), 28
p_butler_Ed (p_A1B1_Ed), 28
p_imhof_Ed (p_A1B1_Ed), 28
plot.default, 27
plot.qfrm (print.qfrm), 26
pqfr (dqfr), 11
pqfr_A1B1 (dqfr), 11
pqfr_butler (dqfr), 11
pqfr_davies (dqfr), 11
pqfr_imhof (dqfr), 11
print.qfpm (print.qfrm), 26

print.qfrm, 26

qfm_Ap_int (qfpm), 45
qfmrm, 4, 5, 8, 11, 24, 26, 40, 47, 53
qfmrm_ApBDqr_int (qfmrm), 40
qfmrm_ApBDqr_npi (qfmrm), 40
qfmrm_ApBIqr_int (qfmrm), 40
qfmrm_ApBIqr_npi (qfmrm), 40
qfmrm_IpBDqr_gen (qfmrm), 40
qfpm, 5, 20, 24, 26, 27, 45, 47, 56
qfpm_ABDpqr_int (qfpm), 45
qfpm_ABpq_int (qfpm), 45
qfrm, 4, 5, 8, 15, 16, 24, 26, 38, 43, 44, 47, 48,

52, 56
qfrm_ApBq_int (qfrm), 48
qfrm_ApBq_npi (qfrm), 48
qfrm_ApIq_int, 3, 27
qfrm_ApIq_int (qfrm), 48
qfrm_ApIq_npi (qfrm), 48
qfrm_cpp (p_A1B1_Ed), 28
qqfr (dqfr), 11

range_qfr, 54
rqfmr (rqfr), 55
rqfp (rqfr), 55
rqfpE (p_A1B1_Ed), 28
rqfr, 18, 55

S_fromUL, 58
sum_counterdiag, 57
sum_counterdiag3D (sum_counterdiag), 57

tr, 58

uniroot, 16

	a1_pk
	d1_i
	d2_ij
	d3_ijk
	dqfr
	dtil2_pq
	hgs
	hyperg_1F1_vec_b
	iseq
	is_diagonal
	KiK
	new_qfrm
	print.qfrm
	p_A1B1_Ed
	qfmrm
	qfpm
	qfrm
	range_qfr
	rqfr
	sum_counterdiag
	S_fromUL
	tr
	Index

